Photoaffinity Labeling of Mitochondrial Adenosine Triphosphatase by an Azido Derivative of the Natural Adenosine Triphosphatase Inhibitor[†]

Gérard Klein, Michel Satre, Anne-Christine Dianoux, and Pierre V. Vignais*

ABSTRACT: The natural mitochondrial ATPase inhibitor (IF1) was modified with a radioactively labeled heterobifunctional and photosensitive reagent, methyl 4-azido(14C)benzimidate ((14C)MABI). Titration experiments of IF₁ by (14C)MABI and tryptic maps of (14C)MABI-IF₁ indicated that specific lysine residues in IF₁ are preferentially labeled by (¹⁴C)MABI. Under appropriate conditions of labeling (1 to 2 lysine residues modified per IF₁), MABI-IF₁ exhibited the same inhibitory potency as native IF₁ on the hydrolytic activity of the coupling factor 1 of mitochondrial ATPase (F1). The same conditions were required for inhibition of F₁ by MABI-IF₁ and IF₁ (slightly acidic pH and presence of ATP and MgCl₂). In photolabeling experiments, (14C)MABI-IF1 was used to investigate the localization of IF₁ binding sites on F₁. Upon photoirradiation, MABI-IF₁ bound selectively to the β subunit of soluble or membrane-bound F₁. Adenylyl imidodiphosphate

The mitochondrial ATPase inhibitor (IF₁)¹ (Pullman & Monroy, 1963) is a heat-stable protein of low molecular weight (less than 10000) which is loosely bound to the F₁ sector of ATPase [for recent reviews, see Pedersen et al. (1978), Penefsky (1979), and Senior (1979)]. It is recognized that IF₁ inhibits both ATP-dependent reactions in mitochondria (Asami et al., 1970; Ernster et al., 1973; Van de Stadt et al., 1973; Van de Stadt & Van Dam, 1974) and oxidative phosphorylation (Harris et al., 1979). In order to elucidate the mechanism of this inhibition in terms of molecular interactions, radiolabeled IF₁ was required. In the first labeling experiments, IF₁ from yeast mitochondria was biosynthetically labeled by ¹⁴C by growing the yeast cells in a medium supplemented with (14C) leucine (Satre et al., 1975). In more recent experiments, IF₁ prepared from beef heart mitochondria was radiochemically labeled by (14C)PITC, resulting in a much higher specific radioactivity (Klein et al., 1980).

In the present work, IF₁ was modified by (¹⁴C)MABI, a reagent which possesses an imido ester at one end and a photoactivable azido group at the other end. (¹⁴C)MABI was covalently bound in the dark by its imidate group to IF₁ (most likely at the level of lysine residues); then (¹⁴C)MABI-IF₁ was added to F₁. Upon photoirradiation, the azido group of (¹⁴C)MABI-IF₁ was activated to give a reactive nitrene which is expected to bind covalently to the same subunit of F₁ as that recognized by the IF₁ moiety of (¹⁴C)MABI-IF₁. On the basis of this principle, the experiments reported here describe the use of (¹⁴C)MABI-IF₁ to localize the binding site of IF₁ on F₁ and to investigate the effect of a number of F₁ ligands on F₁-IF₁ interactions. (¹⁴C)MABI-IF₁ was also used, in the absence of light, in reversible binding assays, to analyze the

and quercetin, two compounds which partially mimic the inhibitory effect of IF₁ on ATPase activity of F₁, markedly prevented the binding of (14C)MABI-IF₁ to F₁; on the other hand, aurovertin, a specific ligand of the β subunit of F_1 , did not affect the interaction between (14C)MABI-IF₁ and F₁. In the absence of light, (14C)MABI-IF₁ was used as a reversible radiolabeled ligand with respect to membrane bound F₁ to investigate F₁-IF₁ interactions in inside-out submitochondrial particles as a function of the energy state of the particles. Oxidation of NADH by submitochondrial particles resulted in a decrease of bound (14C)MABI-IF1; the effect was counteracted by antimycin. The data suggested that added (14C)MABI-IF₁ is capable of exchanging with IF₁ bound to F_1 in submitochondrial particles and that the rate and extent of (14C)MABI-IF₁ release are triggered by the proton-motive force developed by the particles.

changes in binding affinity of IF_1 for membrane-bound F_1 in submitochondrial particles placed in different metabolic conditions

Materials and Methods

Cold MABI was obtained from Pierce. (14C)MABI (11 mCi/mmol) was synthesized by the Commissariat à l'Energie Atomique, Saclay, France. (14C)DCCD (54.5 mCi/mmol) and (14C)NEM (23.7 mCi/mmol) were obtained from the Commissariat à l'Energie Atomique, Saclay, France, and from the Radiochemical Centre, Amersham, England respectively.

Biological Preparations. Beef heart mitochondria were prepared as described by Smith (1967). Beef heart submitochondrial particles depleted of their endogenous inhibitor protein (AS particles) were prepared by the method of Racker & Horstman (1967). MgATP particles were prepared according to Löw & Vallin (1963). Coupling factor F₁ was purified by the method of Knowles & Penefsky (1972). The purified F₁ had a specific activity of 70–80 μmol of ATP hydrolyzed min⁻¹ mg⁻¹ when assayed as described by Knowles & Penefsky (1972). F₁ was stored as a 2 M (NH₄)₂SO₄ precipitate in 0.25 M sucrose, 50 mM Tris-HCl, 2 mM EDTA, and 4 mM ATP, pH 8.0. Before use, the F₁ was desalted by passage through a Sephadex G-50 (fine) column as described by Penefsky (1977). ATPase inhibitor was purified by the method of Horstman & Racker (1970) as modified by Kagawa

[†]From the Laboratoire de Biochimie (CNRS/ERA 903 et INSERM U.191), Département de Recherche Fondamentale, Centre d'Études Nucléaires de Grenoble, et Faculté de Médecine de Grenoble, Grenoble, France. Received May 27, 1980. This investigation was supported in part by research grants from the Fondation pour la Recherche Médicale and from the Délégation Générale à la Recherche Scientifique et Technique.

¹ Abbreviations used: AMPPNP, adenylyl imidodiphosphate; AS particles, submitochondrial particles prepared from beef heart mitochondria by sonication in the presence of ammonium hydroxide at pH 9.0 followed by a Sephadex G-50 treatment; DCCD, dicyclohexyl-carbodiimide; FCCP, carbonyl cyanide p-(trifluoromethoxy)phenyl-hydrazone; F₁, beef heart mitochondrial coupling factor; IF₁, beef heart ATPase protein inhibitor; (IF₁)₂, (IF₁)₃, dimer, trimer, etc., of IF₁; MABI, methyl 4-azidobenzimidate; MOPS, 3-(N-morpholino)propanesulfonic acid; NaDodSO₄, sodium dodecyl sulfate; NEM, N-ethylmaleimide; P₁, inorganic phosphate; PITC, phenyl isothiocyanate; TPCK-trypsin, L-1-tosylamido-2-phenylethyl chloromethyl ketone treated trypsin; EDAC, 1-ethyl-3-[(dimethylamino)propyl]carbodiimide; EEDQ, N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline.

1340 BIOCHEMISTRY KLEIN ET AL.

(1974) for the ethanol fractionation step.

Derivatization of IF_1 by MABI or $(^{14}C)MABI$. All steps were carried out in the dark. MABI was added to 1 mg of IF_1 (2 mg/mL) in 100 mM triethanolamine buffer, pH 9.0, to a final concentration of 4.7 mM. The mixture was incubated for 1 h at 37 °C with constant stirring. Then 10 mM Tris-SO₄, pH 8.0, was added to inactivate the nonreacted MABI. MABI- IF_1 was separated from free MABI on a Sephadex G-25 (medium) column (1.5 × 20 cm) and eluted in the void volume. (^{14}C)MABI- IF_1 was prepared according to the same procedure. Its specific radioactivity was between 10 and 15.10 9 cpm/mmol.

Covalent Photolabeling of F_1 by MABI-IF₁. Photoactivation of MABI-IF₁ was done with UV light delivered by a mineral light UVS11 lamp placed at a distance of 5 cm from the sample. In routine irradiation MABI-IF₁ (7 μ g) and F₁ (75 μ g) were preincubated at 25 °C in the dark for 15 min before UV irradiation in 0.25 mL of a medium containing 0.25 M sucrose, 1 mM MgCl₂, 0.5 mM ATP, and 10 mM MOPS, final pH 6.5, for 5 min. UV light under the described conditions had no significant effect on the activity of F₁ or IF₁.

Enzyme Test. The assay of residual ATPase activity following binding of IF_1 or MABI- IF_1 to F_1 was performed as described by Horstman & Racker (1970). The incubation was initiated by addition of 0.25 mL of an ATPase assay medium containing 0.1 M Tris-SO₄, 20 mM ATP, 10 mM MgCl₂, 20 mM phosphoenolpyruvate, and 30 μ g of pyruvate kinase, final pH 8.0. It was carried out for 10 min at 30 °C and terminated by the addition of 0.125 mL of 2.5 M HClO₄. Inorganic phosphate (P_i) was determined on 0.2 mL aliquots by the method of Fiske & SubbaRow (1925).

NaDodSO₄-Polyacrylamide Gel Electrophoresis. Electrophoresis in 7.5% polyacrylamide gels containing 0.1% NaDodSO₄ was carried out as described by Weber & Osborn (1969). After overnight migration at 4 mA/gel, the gels were stained for 4-6 h with a solution made of 0.05% Coomassie Blue R 250, 25% isopropyl alcohol, and 10% acetic acid and destained according to the method of Fairbanks et al. (1971). The densitometric traces were recorded with a Joyce Loebl Scan 400. For determination of the distribution of radioactivity, the gels previously stained and destained were frozen in solid CO₂ and sliced in 1-mm slices with a Joyce Loebl slicer. Slices were digested by overnight incubation in 1 mL of 10% H₂O₂ at 50-60 °C and counted in 10 mL of a scintillation fluid (Patterson & Greene, 1965).

Protein Concentration. The protein concentration of F_1 and IF_1 samples was determined by the method of Bradford (1976) with Coomassie Blue G250 and by the biuret method of Gornall et al. (1949) for submitochondrial particles. Bovine serum albumin was used as a standard.

Tryptic Peptide Mapping. The peptide mapping was performed as described previously (Klein et al., 1980). (14 C)-MABI-IF₁ (40 μ g of protein, 0.9 mol of (14 C)MABI/mol of IF₁) in 30 mM ammonium bicarbonate, pH 7.9, was incubated at 37 °C for 3 h with TPCK-trypsin in a final volume of 0.11 mL, using a trypsin to IF₁ ratio of 1:100, and for another period of 3 h after a new addition of TPCK-trypsin to bring the trypsin to IF₁ ratio to 1:50. Then 0.02 mL of 1 N acetic acid was added and the digest was lyophilized. The lyophilized digest was redissolved in 3 μ L of electrophoresis buffer (see below), spotted on a 10 × 10 cm cellulose thin layer plate (F1440, Schleicher and Schüll), and subjected to electrophoresis at 200 V for 1 h at 4 °C in pyridine/acetic acid/acetone/H₂O (20:40:160:800 v/v) pH 4.4. Ascending chromatography in butanol/pyridine/acetic acid/H₂O (30:20:6:24

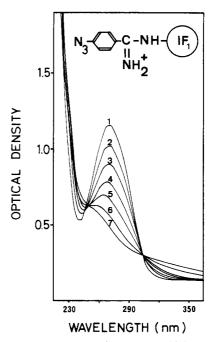


FIGURE 1: Absorption spectra of methyl 4-azidobenzoimidate- IF_1 (MABI- IF_1). A 0.4 mg/mL solution of MABI- IF_1 in 10 mM ammonium sulfate, pH 8.0, was irradiated in a 1-cm optical length quartz cuvette with mineral light UVS 11. The figure shows that the peak of 273 nm was gradually decreased upon irradiation (traces 1-7).

v/v) was performed in the second dimension for 2 h.

Results

Chemical and Biological Properties of (14C)MABI-IF₁. (14C)MABI-IF₁ prepared in the dark as described under Materials and Methods was freed of contaminating (14C)-MABI by Sephadex chromatography. Under these conditions, MABI is expected to react by its imidate group with lysine residues in IF₁. The extinction coefficient of the absorption peak at 273 nm of (14C)MABI-IF₁ was calculated to be 20 000 on the basis of the (14C)MABI incorporated and the specific radioactivity of (14C)MABI, in good agreement with the MABI extinction coefficient of 17 000 reported by Ji (1977). When MABI-IF₁ was irradiated under UV light, the peak at 273 nm was gradually reduced (Figure 1), in accordance with the photosensitivity of MABI-IF₁.

The inhibitory effect of MABI-IF₁ on F₁-ATPase activity was tested in the dark against AS particles. Labeling of IF₁ by (¹⁴C)MABI to various extents was achieved by sequential additions of (¹⁴C)MABI to IF₁ in 100 mM triethanolamine, pH 8. As shown in Figure 2, up to 5 MABI residues could be incorporated without any loss of biological activity of IF₁. Parallel titration of ATPase in AS particles by native IF₁ and by IF₁ modified with about 1 mol of MABI per mol of enzyme showed that partially modified MABI-IF₁ behaves exactly like IF₁ (Figure 3).

Tryptic Map of (14C)MABI-IF₁. Under the described conditions, tryptic digestion was complete. A tryptic map of (14C)MABI-IF₁ modified with an average of 1 MABI residue per mol of IF₁ is presented in Figure 4. The tryptic peptides were revealed by ninhydrin staining and autoradiography. Comparison of stained tryptic peptides from unmodified IF₁ and MABI-IF₁ revealed the same spots (about 17). Three highly radioactive peptides were detected, together with several minor ones. The accumulation of a restricted number of radioactive peptides suggested a preferential reactivity of MABI with specific lysine residues in IF₁. The tryptic map of MABI-IF₁ was similar to the tryptic map of IF₁ modified

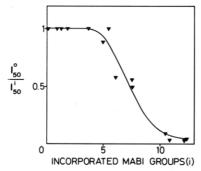


FIGURE 2: Effect of MABI derivatization on IF₁ inhibitory activity. IF₁ was incubated with (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{C}\mathcal{M}\mathcal{A}\mathcal{B}\mathcal{I}\ in the dark under the conditions described under Materials and Methods. (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{A}\mathcal{B}\mathcal{I}\ was incorporated into IF₁ to different extents (up to 12 mol of MABI/mol of IF₁) by stepwise addition of (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{B}\mathcal{B}\mathcal{I}\. The different samples of (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{A}\mathcal{B}\mathcal{B}\mathcal{I}\. The different samples of (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{A}\mathcal{B}\mathcal{B}\mathcal{I}\. The different samples of (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{A}\mathcal{B}\mathcal{B}\mathcal{I}\. The different samples of (\begin{subarray}{c}^{14}\mathcal{C}\mathcal{M}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{I}\mathcal{B}\math

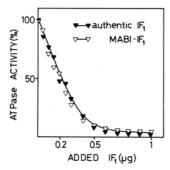


FIGURE 3: Titration curves of AS particles with native IF_1 and MABI- IF_1 . AS particles (25 μ g) were incubated in the dark in the presence of increasing amounts of native ($\nabla\nabla$) or MABI- IF_1 ($\nabla\nabla$, 1 MABI/ IF_1) and the residual ATPase activity was measured.

FIGURE 4: Tryptic peptide mapping of (¹⁴C)MABI-IF₁. Digestion by trypsin and separation of peptides by electrophoresis followed by chromatography were as described under Materials and Methods. Peptides were visualized by ninhydrin staining and by autoradiography. A photograph (plate a), and a representative drawing (plate c) of the ninhydrin stained spots together with a photograph (plate b) and a representative drawing (plate d) of the autoradiogram are presented.

by PITC, a reagent which, like MABI, binds to lysine residues in IF₁ (Klein et al., 1980).

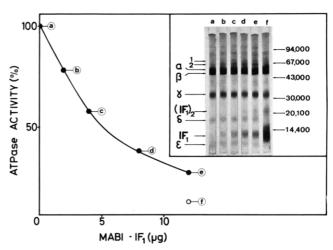


FIGURE 5: Cross-linking of MABI-IF₁ to F₁. To 75 μ g of F₁ were added the following amounts of MABI-IF₁: (a) none, (b) 2 μ g, (c) 4 μ g, (d) 8 μ g, (e) 12 μ g, (f) 12 μ g plus 38 μ g of native IF₁, in a final volume of 0.125 mL. Ten microliters was withdrawn for determination of the residual ATPase activity. The remaining was photoirradiated as described under Materials and Methods and then submitted to NaDodSO₄-polyacrylamide gel electrophoresis. The figure shows the inhibition of the ATPase activity, and, in the insert, the corresponding gel profiles.

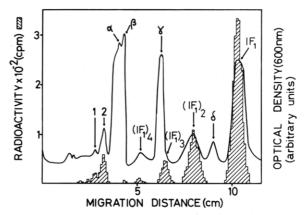


FIGURE 6: Radioactivity profile of the cross-linked (14 C)MABI-IF $_1$ -F $_1$ complex. F $_1$ (75 μ g of protein) was added to (14 C)MABI-IF $_1$ (13 μ g of protein). The final volume was 0.125 mL. The mixture was photoirradiated as described under Materials and Methods and analyzed by NaDodSO $_4$ -polyacrylamide gel electrophoresis. The 14 C radioactivity profile corresponds to the shadowed area and the densitometric trace at 600 nm to the plain line.

Photo-Cross-Linking of Isolated F_1 with (14C)MABI-IF₁. As shown in Figure 5, ATPase activity of isolated F₁ steadily decreased upon incubation in the dark with increasing concentrations of (14C)MABI-IF₁. Aliquots corresponding to different extents of F₁ inhibition were photoirradiated with UV light as described under Materials and Methods and subjected to NaDodSO₄-polyacrylamide gel electrophoresis. Beside the bands corresponding to F₁ peptides and to the monomeric and dimeric forms of IF1 found in the control, two new bands, referred to as 1 and 2, were revealed by Coomassie Blue staining in the photoirradiated samples. They became more pronounced as the concentration of MABI-IF₁ was increased (gels a-e, Figure 5). Their molecular weights were approximately 71 000 and 61 000 respectively. When F₁ was incubated with MABI-IF₁ together with an excess of native IF₁, bands 1 and 2 no longer accumulated (gel f, Figure 5).

As shown in Figure 6, bands 1 and 2 are radiolabeled and therefore correspond to complexes containing (14C)MABI-IF₁. Radioactive labeling permitted their differentiation from other high molecular products that are formed by UV-light-induced

1342 BIOCHEMISTRY KLEIN ET AL.

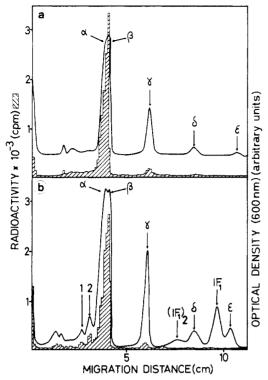


FIGURE 7: (14 C)DCCD labeling of photoirradiated F_1 and F_1 –MABI-IF $_1$ complex. F_1 (a) and MABI-IF $_1$ - F_1 complex (b) were photoirradiated as described under Materials and Methods. The amount of F_1 used was 75 μ g of protein and that of MABI-IF $_1$ 4.5 μ g of protein. (14 C)DCCD (100 μ M) was then added and allowed to react for 30 min at 30 °C, resulting in incorporation of 1.2–1.4 mol of (14 C)DCCD per mol of F_1 or MABI-IF $_1$ – F_1 . Free (14 C)DCCD was removed by filtration on a Sephadex G-50 column (Penefsky, 1977), and the samples were analyzed by NaDodSO $_4$ -polyacrylamide gel electrophoresis. The 14 C radioactivity profile (cross-hatched area) is shown under the densitometric trace at 600 nm.

cross-linking of F_1 subunits. Radioactive products whose molecular weights are multiple of that of (^{14}C)MABI-IF $_1$ also accumulated. Since they were also formed by irradiation of (^{14}C)MABI-IF $_1$ alone, in the absence of F_1 , they were identified as dimer, trimer, and possibly tetramer of (^{14}C)-MABI-IF $_1$, indicating the tendency of IF $_1$ to self-association. It must be stressed that oligomers beyond the tetramer were not generated in significant amounts in our experimental conditions. This excludes the contribution of high molecular weight oligomers of (^{14}C)MABI-IF $_1$ to the cross-linked products 1 and 2 that accumulate after photoirradiation of a mixture of F_1 and (^{14}C)MABI-IF $_1$.

Identification of Cross-Linked Products 1 and 2 by Specific Labeling of F, Subunits. The most plausible candidates to fit the molecular weights of products 1 and 2 are $\alpha(IF_1)_2$, $\beta(IF_1)_2$, $\alpha(IF_1)$ or $\beta(IF_1)$, where $(IF_1)_2$ refers to a dimeric form of IF₁. The approach used to identify unambiguously products 1 and 2 was based on the fact that the α subunit of F_1 , but not the β subunit, possesses SH groups and thus can bind alkylating reagents (Senior, 1975) and that the β in isolated F₁ can specifically bind DCCD (Pougeois et al., 1979). Consequently, if either product 1 or 2 is labeled by (14C)NEM, it will be concluded that it contains subunit α ; conversely, labeling by (14C)DCCD will specify the presence of subunit β . Such a strategy was successfully used for the identification of subunits after cross-linking of F₁ alone, in a study of the arrangement of F₁ subunits (Satre et al., 1976). It is noteworthy that DCCD and NEM do not react with IF₁.

As shown in Figure 7b, both bands 1 and 2 were labeled with (14C)DCCD, which indicates that both contain subunit

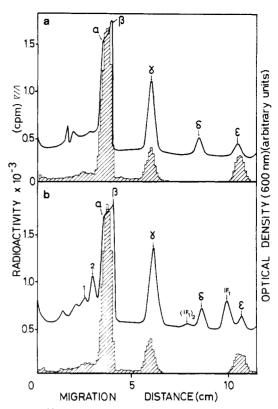


FIGURE 8: (14 C)NEM labeling of photoirradiated F_1 and F_1 –MABI-IF₁ complex F_1 (a) and MABI-IF₁– F_1 complex (b) were photoirradiated exactly as in Figure 7. To the samples 3 mM (14 C)NEM and 1% (w/v) NaDodSO₄ were added and allowed to react for 20 min at 30 °C. Samples were analyzed by NaDodSO₄–polyacrylamide gel electrophoresis. The 14 C radioactivity profile (cross-hatched area) is shown under the densitometric trace at 600 nm.

 β . They can therefore be identified with $\beta(IF_1)_2$ and $\beta(IF_1)$, respectively. In contrast to (^{14}C)DCCD labeling, labeling by (^{14}C)NEM yielded virtually the same radioactivity pattern for F_1 alone and F_1 cross-linked to MABI-IF₁ (Figure 8); the very slight increase of radioactivity in the region where products 1 and 2 are located may suggest the formation of a very small proportion of $\alpha(IF_1)$ product. These data strongly suggest that IF₁ binds essentially to the β subunit of F_1 .

Effect of AMPPNP, Quercetin, and Aurovertin on Cross-Linking of MABI-IF₁ to F_1 . AMPPNP, a nonhydrolyzable analogue of ATP (Garrett & Penefsky, 1975), and quercetin (Lang & Racker, 1974) share certain properties with IF₁. In fact they behave apparently as unidirectional inhibitors: they inhibit both soluble and particulate mitochondrial ATPase and have no effect on oxidative phosphorylation in submitochondrial particles. Aurovertin, a specific ATPase inhibitor, binds to the β subunit of F_1 (Verschoor et al., 1977).

As shown in Table I, AMPPNP and quercetin markedly reduced the photoinduced covalent binding of (14 C)MABI-IF₁ to F₁. This strongly suggests that quercetin competes with MABI-IF₁ for binding to the β subunit of F₁. The effect of AMPPNP is in agreement with previous data obtained with biosynthetically labeled IF₁ showing that AMPPNP cannot substitute for ATP to promote the binding of IF₁ to AS particles (Klein et al., 1977). The fact that aurovertin has no effect on the binding of (14 C)MABI-IF₁ to F₁ suggests that either the binding sites for aurovertin and IF₁ are different or IF₁ binds more firmly to F₁ than aurovertin does.

Photo-Cross-Linking of Membrane-Bound ATPase by (14C)MABI-IF₁. AS particles supplemented with (14C)-MABI-IF₁ were photoirradiated under UV light and the la-

Table I: Effect of Quercetin, AMPPNP, and Aurovertin on the Formation of Cross-Linked Bands 1 and 2 Containing (14C)MABI-IF, a

	¹⁴ C radioactivity in bands 1 and 2
additions	(%)
ATP	100
ATP + quercetin	28
AMPPNP	31
ATP + aurovertin	100

 $^{\alpha}$ F₁ (100 μ g) was incubated in 2 mL of a medium containing 0.25 M sucrose, 10 mM MOPS, and 1 mM MgCl₂, pH 6.5, with 25 μ g of (14 C)MABI-IF₁. Where indicated, 0.5 mM ATP, 0.5 mM AMPPNP, 1 mg/mL quercetin, and 10 μ M aurovertin were added. After 15 min of incubation in the dark, the F₁-(14 C)MABI-IF₁ complex was irradiated with UV light and analyzed by NaDodSO₄-polyacrylamide gel electrophoresis. The region of the gel corresponding to bands 1 and 2 was cut out and digested with H₂O₂, and its radioactivity counted.

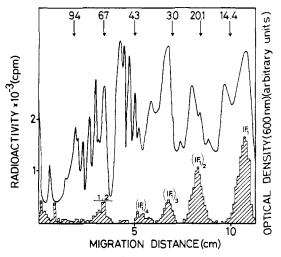


FIGURE 9: Cross-linking of (14 C)MABI-IF₁ to AS particles. AS particles (200 μ g) were incubated with (14 C)MABI-IF₁ (13 μ g) for 15 min in the dark and then irradiated with UV light. The cross-linked sample was treated with 0.1% NaDodSO₄ and then analyzed by NaDodSO₄-polyacrylamide gel electrophoresis. The figure shows the 14 C radioactivity profile (cross-hatched area) and the densitometric trace at 600 nm.

beled proteins were separated after lysis of the particles by NaDodSO₄-polyacrylamide gel electrophoresis (Figure 9). Beside IF₁ oligomers (bands (IF₁)₂, (IF₁)₃, (IF₁)₄), the peak of radioactivity corresponding to molecular weights in the range of 60 000 to 70 000 was located at the same place as that observed for the cross-linked products 1 and 2 obtained by reaction of IF₁ with the β subunit of soluble F₁.

Effect of Energization on the Reversible Binding of (14C)MABI-IF₁ to MgATP Particles (Dark Reaction). Respiring MgATP submitochondrial particles can readily develop a proton-motive force (Sorgato & Ferguson, 1979; Villiers et al., 1979) of virtually the same value as that found in mitochondria. Kinetic data obtained with MgATP particles were interpreted to mean that IF₁ is released from F₁ upon energization of the mitochondrial membrane (Van de Stadt et al., 1973; Van de Stadt and Van Dam, 1974; Harris et al., 1979). To test the validity of this interpretation, (14C)-MABI-IF₁ was used as a reversible ligand of membrane-bound F₁ and its binding affinity was determined under various conditions of activity of the respiratory chain in the absence of photoirradiation. Interaction of added (14C)MABI-IF₁ with membrane-bound F₁ in MgATP particles was feasible because most of the particles were inside out (Racker, 1970), which

Table II: Effect of Energization on Binding of (14C)MABI-IF, to MgATP Submitochondrial Particles^a

additions	ATPase activity (µmol of P _i min ⁻¹ (mg particles) ⁻¹)	specifically bound (14C)MABI-IF ₁ (pmol (mg particles) -1)
none	0.70	154
NADH	0.92	70
NADH + antimycin A	0.75	107

^a MgATP particles (2 mg) were preincubated for 15 min in the dark in 2 mL of a medium containing 0.25 M sucrose, 4 mM potassium phosphate, 0.5 mg/mL BSA, 1 mM ADP, and 1 mM MgCl₂, pH 7.0 with 10 μ g of (1⁴C)MABI-IF₁. This was followed by addition, where indicated, of 2 mM NADH and 10 μ g of antimycin A. After 0.5-min incubation at 20 °C, 50 μ L of the suspension was removed for measurement of the ATPase activity and the remaining suspension centrifuged at top speed in a Sorvall centrifuge at 0 °C. The walls of the tubes were rinsed and the pellets dissolved in 1 mL of formamide at 180 °C. A parallel series of incubations with MgATP particles previously heated at 100 °C for 5 min was carried out to determine the nonspecifically bound (1⁴C)MABI-IF₁. The nonspecifically bound radioactivity was subtracted from the total bound radioactivity to calculate the amount of specifically bound (1⁴C)MABI-IF₁.

made their membrane-bound F₁ accessible to ligands of the incubation medium. MgATP particles were preincubated with (14C)MABI-IF₁ (Table II). Aliquots of the suspension were then incubated with NADH for a few minutes; another incubation was run in the presence of antimycin to inhibit NADH oxidation; and finally a control incubation without NADH was performed for the same period of time. ATPase activity of the incubated particles was measured; then the bound (14C)MABI-IF₁ was determined on the sedimented particles after high-speed centrifugation. Incubation with NADH increased the ATPase activity and, in parallel, decreased the amount of bound radioactivity with respect to a control nonsupplemented with NADH. Addition of antimycin to NADH-respiring particles resulted in a decrease of ATPase activity and an increase of bound radioactivity. These data are interpreted as follows. In the control, the bound radioactivity reflects the binding of (14C)MABI-IF1 to F1 in particles, most likely by exchange with IF₁. The decrease in bound radioactivity which accompanies NADH oxidation is explained by the release of the previously bound (14C)MABI-IF₁; this is fully consistent with the concomitant increase in ATPase activity.

Discussion

MABI was introduced by Ji (1977) as a photosensitive heterobifunctional cross-linking reagent and used to determine the receptor site for concanavalin A in the human erythrocyte membrane. The present work describes the synthesis of a radiolabeled photoactivable derivative of IF₁, (14C)MABI-IF₁, and its use to investigate the localization of IF, binding sites on F₁ and the modulation of F₁-IF₁ interaction in submitochondrial particles as a function of the energy state of the particles. Critical tests of the biological activity of MABI-IF₁ were performed. (14C)MABI-IF₁ displayed the same inhibitory potency as native IF₁ on the ATPase activity of F₁ provided that the number of incorporated moles of MABI per mole of IF₁ did not exceed 5. In routine assays, 1-1.5 mol of (14C)MABI was incorporated per mol of IF₁, thus resulting in fully active (14C)MABI-IF₁. By specifically labeling the α subunit of F₁ by (¹⁴C)NEM (Senior, 1975) and the β subunit by (14C) DCCD (Pougeois et al., 1979), it was possible to

1344 BIOCHEMISTRY KLEIN ET AL.

locate unambiguously the IF₁ binding site in the β subunit of F₁. These data corroborate previous ones (Klein et al., 1980) based on a different approach, where IF1 was first radiolabeled by (14C)PITC and then covalently bound to F₁ by the crosslinking reagents EDAC or EEDQ. The advantage of (14C)-MABI-IF₁ over (¹⁴C)PITC-IF₁ is that binding of (¹⁴C)-MABI-IF₁ to F_1 can be achieved directly by photoactivation without the help of added cross-linkers. One may add that cross-linking of juxtaposed subunits by reagents like EDAC and EEDQ requires proper alignment of reactive groups in these subunits. Covalent photo-cross-linking of (14C)-MABI-IF₁ with the interacting subunit in F_1 is probably not subject to this steric restriction because the nitrene generated by photoirradiation of (14C)MABI-IF₁ is characterized by a high and unspecific reactivity toward a variety of chemical groups in proteins. Consequently the present data bring strong evidence for specific interaction between IF₁ and the β subunit of F₁. The low yield of photo-cross-linking (about 10%) reported in this paper is probably due to technical limitations. In fact, it is known (Guillory, 1979) that photoaffinity labeling is a low-yield reaction, because of photoproduct inhibition. The stoichiometry of the binding of (14C)MABI-IF₁ to IF₁ was not examined in this paper. It must be recalled that a stoichiometry of 1 was found for the binding of IF₁ (labeled by (14C)PITC) to F₁ (mol/mol) (Klein et al., 1980).

A few examples of the potential use of (14C)MABI-IF₁ are given. Addition of AMPPNP and quercetin prevented the binding of (14C)MABI-IF₁ to F₁. Quercetin may directly compete with IF₁ for binding to the β subunit of F₁. It was previously reported that AMPPNP was inefficient (in contrast to ATP) to promote the binding of biosynthetically radiolabeled (14C) IF₁ to AS particles. This also applies for the binding of (14C)MABI-IF₁ to F₁, which gives further evidence for the similar biological behavior of native IF₁ and MABI-IF₁. (14C)MABI-IF₁ was also used in the absence of light to probe the effect of energization of submitochondrial particles on F₁-IF₁ interaction. In a number of reports, the interaction of IF₁ with membrane-bound F₁ in submitochondrial particles has been assessed on the basis of the inhibition of ATPase activity or ATP synthesis; dissociation of IF₁ from F₁ in submitochondrial particles was postulated to result in an increased maximal velocity of the ATPase activity (Van de Stadt et al., 1973; Van de Stadt & Van Dam, 1974; Ernster et al., 1973) or in a shortening of the lag period which preceeds phosphorylation (Harris et al., 1979). Although a direct relationship between IF1-F1 interaction and the modulation of F₁ activity was implicitly recognized in these experiments, direct evidence of changes in binding affinity of IF₁ for F₁ was lacking. The preliminary data obtained with (14C)MABI-IF1 provide further support to the hypothesis that the energy state of mitochondrial particles indeed modulates the binding affinity of F₁ for IF₁ and that the proton-motive force developed by mitochondrial respiration results in a release of IF₁.

References

- Asami, K., Juntti, K., & Ernster, L. (1970) *Biochim. Biophys. Acta* 205, 307-311.
- Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.
- Ernster, L., Juntti, K., & Asami, K. (1973) Bioenergetics 4, 149-159.
- Fairbanks, G., Steck, T. L., & Wallach, D. F. H. (1971) Biochemistry 10, 2606-2617.

- Fiske, C. H., & SubbaRow, Y. (1925) J. Biol. Chem. 66, 375-400.
- Garrett, N. E., & Penefsky, H. S. (1975) J. Biol. Chem. 250, 6640-6647.
- Gornall, A. G., Bardawill, C. J., & David, M. M. (1949) J. Biol. Chem. 177, 751-766.
- Guillory, R. J. (1979) Current Top. Bioenerg. 9, 267-413. Harris, D. A., Von Tscharner, V., & Radda, G. K. (1979) Biochim. Biophys. Acta 548, 72-84.
- Horstman, L. L., & Racker, E. (1970) J. Biol. Chem. 245, 1336-1344.
- Ji, T. H. (1977) J. Biol. Chem. 252, 1566-1570.
- Kagawa, Y. (1974) Methods Membr. Biol. 1, 240-241.
- Klein, G., Satre, M., & Vignais, P. (1977) FEBS Lett. 84, 129-134.
- Klein, G., Satre, M., Dianoux, A. C., & Vignais, P. V. (1980) Biochemistry 19, 2919-2925.
- Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623.
- Lang, D. R., & Racker, E. (1974) Biochim. Biophys. Acta 333, 180-186.
- Löw, H., & Vallin, I. (1963) Biochim. Biophys. Acta 69, 361-374.
- Patterson, M. S., & Greene, R. C. (1965) Anal. Chem. 37, 854-857.
- Pedersen, P. L., Amzel, L. M., Soper, J. W., Cintron, N., & Hullihen, J. (1978) in Energy Conservation in Biological Membranes (Schäfer, G., & Klingenberg, M., Eds.) pp 159-194, Springer Verlag, Berlin.
- Penefsky, H. S. (1977) J. Biol. Chem. 252, 2891-2899.
- Penefsky, H. S. (1979) Adv. Enzymol. 49, 223-280.
- Pougeois, R., Satre, M., & Vignais, P. V. (1979) *Biochemistry* 18, 1408-1413.
- Pullman, M. E., & Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769.
- Racker, E. (1970) in Essays in Biochemistry (Campbell, P. N., & Dickens, E., Eds.) pp 1-22, Academic Press, London.
- Racker, E., & Horstman, L. L. (1967) J. Biol. Chem. 242, 2547-2551.
- Satre, M., De Jerphanion, M.-B., Huet, J., & Vignais, P. V. (1975) Biochim. Biophys. Acta 387, 241-255.
- Satre, M., Klein, G., & Vignais, P. V. (1976) Biochim. Biophys. Acta 453, 111-120.
- Senior, A. E. (1975) Biochemistry 14, 660-664.
- Senior, A. E. (1979) in *Membrane Proteins in Energy Transduction* (Capaldi, R. A., Ed.) pp 233-278, Marcel Dekker, New York.
- Sorgato, M. C., & Ferguson, S. J. (1979) *Biochemistry 18*, 5737-5742.
- Smith, A. L. (1967) Methods Enzymol. 10, 81-86.
- Van de Stadt, R. J., & Van Dam, K. (1974) *Biochim. Biophys. Acta 347*, 240–252.
- Van de Stadt, R. J., De Boer, B. L., & Van Dam, K. (1973) Biochim. Biophys. Acta 292, 338-349.
- Verschoor, G. J., Van der Sluis, P. R., & Slater, E. C. (1977) Biochim. Biophys. Acta 462, 438-449.
- Villiers, C., Michejda, J. W., Block, M., Lauquin, G. J. M., & Vignais, P. V. (1979) Biochim. Biophys. Acta 546, 157-170.
- Weber, K., & Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412.